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Figure 1 Collinearity between regressor terms in the regression function is signaled in the PSR plots in
the mirror images between two coefficients, for example, between A2 and A3, above.  9J=
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ABSTRACT
The original report on the method of Progressively Sequenced Regression Analysis [4] demonstrated how
PSR Analysis would track the regression coefficients and chosen figures of merit for a given set of source
data and a specific regression function as the number of samples in the source data increased by one
observation in an iterative and progressive manner.  The basic purpose was to determine when the number
of samples had reached a point where further increases in number of samples caused no significant change
in the model’s regression coefficients and/or figures of merit.  In this way the sufficient number of samples
could be objectively verified.  This study also revealed that the effects of collinearity between regressor
terms is displayed in a graphical and clearly visible way.  This paper provides an example of collinearity
between regressor terms and shows how it reveals itself and can be recognized in PSR Analysis.

METHOD OF INVESTIGATION
Figure 1 is a graph of the results of Progressively Sequenced Regression Analysis (PSR Analysis) using the
data file named “Pist4Blk.mop”.  It is a direct outgrowth from the original source file,”Pist4Blk.LHC”. 
The means that were used to assemble this .mop file are discussed in Annex C of the internationally
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Figure 2

distributed report regarding PSR Analysis [4].  The .mop extension on the first file simply means that the
original .LHC file was subjected to some math operations.  In this case, the two Pist4Blk files were modified
to include some observation counters that facilitated the graphing of the data.  

The original file, ”Pist4Blk.LHC”, is a collection of four different test results from four different tests that
are, again, explained in Annex C.  Each of the four blocks was started with the creation of a randomly
sequenced test set point plan using latin hypercube (LHC) randomization.  Both the creation of the test set
points and the lab testing and pump data collection processes were conducted by Paul Michael and Pawan
Panwar of MSOE’s Fluid Power Institute Labs.  

The part of the file name, “4Blk”, is a contraction meaning “4 blocks of source data were used to create the
collected ‘Pist4Blk.LHC’ result”.  Again, the explanations of the specific four blocks are contained in
Annex C of the earlier report.  Because of the four constituent blocks, this file is referred to as having been
blocked as a 100, 100, 50, 50 file.  That is, it consists of four data blocks that consisted of 100, 100, 50 and
50 samples, respectively, totaling 300 samples (observations) in all, and each constituent block being a
complete LHC entity.

After adding the serial observation numbers (it’s a convenient variable for plotting the processed data), the
file was subjected PSR Analysis using the following equation as the regression function:

(1)

A1(ND) is the ideal flow, A2(NDP) is the flow of compressibility and A3(P/v) is the pressure and viscosity
dependent internal leakage.

A scan of the coefficient plots in
Figure 1 shows that A2 and A3 appear
to be top-to-bottom mirror images of
one another.  When the plotting axes
are changed, A2 and A3 can be
plotted against one another.  Figure 3
shows that result.

The relationship is not a perfect
straight line, however, it is nearly so. 
It begs a question as to this being an
example of collinearity in which one
regressor data column can be
calculated from another.  If so, the
model could lead to erroneous results
if used to calculate pump output
flow.  Is this an example of
collinearity?

Post-PSR Analysis Processing of Results:  The aim of PSR Analysis, as stated in the original reports [4], 
is to track the evolution of the regression coefficients and selected FoMs as PSR moves through the source
file, one sample at a time.  The result is a set of coefficients that form the solutions to each regression
problem.  It is difficult to compare the significance of each of the coefficients because alone they have no
meaning by themselves.  This is caused by the fact that each regressor, being a function of non-linear
combinations of pump variables, have values in some that range very high and others are very low.  That
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is, there may be, say, a regression coefficient that has a value of 0.000079, that on the surface may look
insignificant.  However if the regressor range has values that are, for example, as high as 397658.2, the
product of the coefficient and the regressor can be significant indeed.  A simple but effective strategy was
applied that gives a better picture of the relative significance of each coefficient.  In the pump of this report,
the ideal flow is about 26.6 gpm.

The procedure involves converting it into a measure of its contribution to the regression dependent variable
by “converting” each to engineering units of the dependent variable, in this case, to gpm.  Here is how it was
done: Each regressor data column (a vector) was scanned for its absolute maximum value and then
multiplied by its respective regression coefficient.  Recall that the coefficientschabge throughout PSR
Analysis, but the peaks are in the unchanging source data file.  This bit of arithmetic was done with the
coefficients before making the graph of Figure 1.  Additionally, all four plotted variables were forced to
share a common axis scaling, further facilitating the ability for the human eye and brain to interpret and
compare the relative importance of each variable.  In this manner and with the graph of Figure 2 it is easily
seen that the A2(NDP) vector is linearly calculable by knowing only A3(P/v). 

ELIMINATING THE OFFENDING REGRESSOR TERM
When collinearity exists, there is essentially a redundancy in the regression terms.  That is, one terms is
unnecessary, but there is a question as to which one should be eliminated.  On the surface, either one can
be labeled as the “offending term” and threfore be eliminated, however, some thought can help to make the
selection on more pragmatic basis.  This author is an advocate of selecting the regression terms on the basis
of known and accepted and applicable theories of the underlying physics, that is, on the basis of applying
first principles.  Review of the literature through the decades will lead to the formation of a list of
“candidate” regression terms.  The modeler can select a candidate, or candidates, and test them as to
applicability and suitability, as in the case of collinearity.  

Unfortunately, the inevitable and unavoidable measurement errors prevent extraction of all but the more
obvious effects.  This was demonstrated by Johnson [1] in Figure 61 on page 96.  This graph shows how the
display of internal leakage as a function of the ideal flow has an “amplifying” effect on the values.  The basic
model for a pump is that its output flow is the ideal flow minus internal leakage.  Internal leakage is not
directly measurable, but must be calculated from an estimation of the ideal flow, based on direct
measurement of the actual output flow, minus the actual flow.  The result is that the errors in estimating the
ideal flow (displacement times speed, actually) and the errors in the measurement of the output flow,
propagate directly and undiminished to the internal leakage calculated value.  When the leakage is compared
to the ideal flow, the error in and the scatter of the leakage are expanded in inverse proportion to the
volumetric efficiency of the  pump.  

In the case at hand, it’s increasingly difficult to absolutely separate the compressibility flow from the
pressure-dependent flow due to internal clearances, especially as pumps become more efficient.  Now, this
is absolutely true: Certainly, both compressibility effects (NDP) and pressure-dependent effects (P/v) are
both at work in the pump simultaneously.  It’s impossible to identify with any degree of certainty, or by any
direct measurement, how much is attributable to either physical process, so one is simply eliminated.  

The compressibility term will be eliminated.  It is the feeling of this researcher that the leakage’s direct
proportionality to pressure, and its inverse proportionality to viscosity are well-known and effectively
postulated in the Hagen-Poisieulle equations.  A crude estimate of the maximum compressibility flow is ½
of 1% per 1000 psi based on a bulk modulus of 200,000 psi.  At its maximum value, the flow loss due to
compressibility in a 3500 psi pump test is less than 1/10 of 1% of maximum ideal flow.  Data error simply
prevents such a small flow to be extracted from the measured flow.  It is insignificant.

Page 3 of  5 



Figure 3 When the offending regressor term is deleted from the regression function, volatility of the
regression coefficients is significantly reduced.  9KC

Compressibility effects could, reasonably and rationally, be added to the total internal leakage by including
a term, for example, that is based on the ½ of 1%, per the above argument.  

RESULTS OF ELIMINATING THE COMPRESSIBILITY FROM THE REGRESSION FUNCTION

Changes to the Input Data File: One change was made to the input data file, but it is judged to have little
to no affect on the results or conclusions drawn therefrom.  Specifically, blocking was used as described in
[5], and the blocking was changed from a file with 100,100,50,50 blocking to 50,100,100,50 which shortens
the learning zone by 50%.  If anything, the shortened learning zone would probably make the trends more
erratic, not less.  

The results of eliminating the compressibility term are shown in Figure 3.  It is immediately obvious that
the trajectories are better behaved, ie, less volatile than with the compressibility term in place.  Surprisingly,
the RMS Error (blue curve) has no significant variations, even in the learning zone (first 50 observations). 
This is felt to be more coincidence in that the input source data had reinforcing information content during
the earliest samples such that the RMS Error was at or near the plateau right at the start of the analysis.  But
the coefficients do not conform as well.  They require the entire learning zone for convergence.  This is,
perhaps, to be expected and predictable because the first data block, the learning block, has 50 samples in
it.  

The results in Figure  3 show no tendency of the volatility that accompanies collinearity.  Furthermore, the
simplicity of the regression function, the low value of A0 (it’s only0.23% of the maximum ideal flow) and
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the absence of collinearity all support the notion that this is a valid and useful mathematical model of this
hydraulic pump.  The RMS Error is only 0.71% of the maximum ideal flow which is more less expected
given that the accuracy requirements for flow measurement in ISO 4409 [3] require uncertainty to be not
more than 0.5% of maximum measured flow.  The calculated value is just outside that window, however,
the model is influenced by ALL of the pump’s variables, speed, pressure, displacement and viscosity, and
not just the measured flow.  In all, the data and the model are deemed to be remarkably useful and reliable.

Extrapolation of the model into operational areas that are outside the tested boundaries will have to be taken
up by any ISO committee that is going to standardize mathematical models of hydraulic machinery.  All
purist modelers will caution against extrapolation of empirically-based models because any untested
operating regions are, strictly speaking, unknown regions.  Few would make any guarantees.  Yet, almost
all users of the models will likely press their luck from time-to-time and do analyses and simulations  that
are outside the tested bounds.  Thus, it is incumbent upon the practical modeler to consider extrapolabilityof
the model.  The model that is characterized by the equation in Figure  3 is eminently extrapolable.

CONCLUSIONS
The existence of regressor collinearity reveals itself in the PSR output in two distinct ways: First, and
arguably most obvious, there will be two terms that are mirror images of one another, and second, there is
more volatility in the two correlated terms, Figure 1.  An analysis of the data and the regression function
with Minitab [2] confirmed the collinarity in the Variation Inflation Factor (VIF).  

Additionally, the model is remarkably simple, a consequence of steps, not detailed in this paper, that
systematically eliminated collinearity.  When all the collinearity was eliminated from an orginal candidate
list that included as many as 7 regressors, the final model consisted of only two regressors, and three
regression coefficients, including the constant.
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